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Abstract. We describe how the thermal counterpart of a vacuum two-point function may be obtained in the
real time formalism in a simple way by using directly the 2×2 matrices that different elements acquire in this
formalism. Using this procedure we calculate the analytic (single component) thermal amplitude for the pion
pole term in the ensemble average of two axial-vector currents to two loops in chiral perturbation theory. The
general expressions obtained for the effective mass and the decay constants of the pion are evaluated in the
chiral and the non-relativistic limits.

PACS. 11.10.Wx; 12.38.Mh; 12.39.Fe

1 Introduction

The real time thermal field theory is apparently compli-
cated by the fact that all two-point functions in this for-
malism assume the form of 2× 2 matrices [1–3]. These
matrices, however, have simple structures: if we factor out
certain matrices depending on the distribution function
only, these become diagonal, each with essentially a sin-
gle independent element with proper analytic properties.
But in actual computations one tends to ignore the ma-
trix structure, starting instead with the so-called physical
11-element, encountering though summation over indices
at all interaction vertices in a Feynman graph. Such a pro-
cedure leads to pieces of ill-defined products of components
of the matrix propagator that must be combined to get
a well-defined quantity. Further the 11-component does
not have a simple analytic structure.
In this work we show that it is both simple and elegant

to work with the matrix amplitudes. All one has to do is to
write out the usual vacuum amplitude. The thermal matrix
amplitude is then obtained by replacing its elements like the
propagator, the self-energy and the vertices, by the corres-
ponding matrices. Factorizing these matrices as mentioned
above, we immediately get the analytic amplitude repre-
senting the dynamics of the system in the heat bath.
Here we apply this procedure to calculate the pion pole

term in the two-point function of the axial-vector currents
to two loops in chiral perturbation theory [4, 5]. This prob-
lem was studied earlier by several authors [6–10], in par-
ticular, by Toublan [11]. After obtaining the analytic am-
plitude, we follow him to find the pion pole position and the
residue. We then find these pole parameters in the chiral
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limit, in agreement with his results. We also evaluate them
in the non-relativistic region.
In Sect. 2 we write down the effective chiral Lagrangian

to fourth order, needed to obtain all the required ver-
tices. In the next section, Sect. 3, we obtain the vacuum
amplitude from all the Feynman graphs up to two loops
contributing to the pion pole term of the two-point func-
tion. The corresponding thermal amplitude is obtained
in Sect. 4, from which we derive the effective parameters,
namely the pion mass and the decay constants at finite
temperature. These expressions are evaluated analytically
in Sect. 5 in the high and low temperature limits. Finally
we bring out the main features of our work in Sect. 6.
Appendix A constitutes an essential part of this work.

Reviewing briefly the real time thermal field theory, we
discuss here at length how the vacuum amplitude for an
individual Feynman graph may be converted into its ther-
mal counterpart. In Appendix B we write the integrals
appearing in the non-factorizable amplitudes. In the last
appendix, Appendix C, we collect the results for the rele-
vant integrals in the high and the low temperature region.

2 Chiral perturbation theory

We consider the QCD Lagrangian for the doublet of light
quarks, u and d. In the absence of their masses, it has
chiral symmetry, being invariant under SU(2)R×SU(2)L.
This symmetry is supposed to be broken spontaneously to
SU(2)V of ordinary isospin, generating the massless pions
as the Goldstone bosons.
In the physical case of non-zero quark masses, chiral

symmetry is also broken explicitly to the same isospin sub-
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group, if we neglect the mass difference between u and d
quarks. The pions become the pseudo-Goldstone bosons
acquiring mass M , given by M2 = 2mqB to lowest order,
where B is related to the quark condensate in vacuum,
whose dynamical generation leads to the spontaneous sym-
metry breaking.
As already stated, we are interested in the pion pole

term in the two-point function of the axial-vector currents,

Aaµ = q̄γµγ5
τa

2
q , a= 1, 2, 3 ,

evaluated in chiral perturbation theory, the effective the-
ory of QCD at low energy. Here τa are the Pauli matri-
ces. Such functions are best calculated in the external field
method, in which one introduces in the original QCD La-
grangian an external field aµa(x) coupled toA

a
µ(x) as well as

a field vµa (x) for the vector currents [4, 5]. The global chiral
symmetry is then promoted to a local one, assuming appro-
priate transformation properties of the external fields.
In the effective theory, the pion fields may be collected

in the form of an unitary matrix,

U(x) = eiϕ
a(x)τa/F .

The constant F may be identified as the pion decay con-
stant in the chiral limit. The local symmetry requires us to
replace the ordinary derivative by the covariant one,

DµU = ∂µU − i{aµ, U} , (1)

where, for our purpose, we retain only the external field
aµ(x). The two-point function of Aµ(x) is now obtained as
the coefficient of the quadratic term in aµ(x) in the per-
turbative evaluation of the generating functional with the
effective Lagrangian.
As a non-renormalizable theory, the effective Lagran-

gian consists of a series of terms with an increasing number
of derivatives and/or quark mass factors,

Leff = L
(2)+L(4)+ . . . .

The leading term is given by

L(2) =
F 2

4

{〈
DµU

†DµU
〉
+M2〈U +U†〉

}
, (2)

where 〈A〉 denotes the trace of the 2×2 matrix A. Here
the first term is invariant under the chiral transformations.
The second term represents explicit symmetry breaking
due to the quark mass term in the QCD Lagrangian.
The next, non-leading piece in Leff is [4, 5, 12]

L(4) =
1

4
l1
〈
DµU

†DµU
〉2
+
1

4
l2
〈
DµU

†DνU
〉
〈DµU†DνU〉

+
1

8
l4M

2
〈
DµU

†DµU
〉
〈U +U†〉

+
1

16
(l3+ l4)M

4〈U +U†〉2. (3)

It provides counterterms necessary to renormalize the one-
loop graphs with vertices from L(2). Thus the bare coup-
ling constants l1, . . . , l4 contain a pole at d = 4 in dimen-
sional regularization. The coefficients of these poles may

be determined by evaluating all the one-loop graphs. Al-
ternatively, these may be obtained directly by calculating
the short distance behavior of the generating functional to
one loop [4, 5]. Adopting the notation introduced by the
authors of this reference, the renormalized coupling con-
stants l̄1, · · · , l̄4 are defined by

li = γi

(
λ+

1

32π2
l̄i

)
, (4)

with

γ1 =
1

3
, γ2 =

2

3
, γ3 =−

1

2
, γ4 = 2 .

The pole is contained in λ,

λ=
Md−4

(4π)2

(
1

d−4
−
1

2
[ln 4π+Γ ′(1)+1]+O(d−4)

)
.

(5)

Up to the factor γi/32π
2, the constants l̄i are running coup-

ling constants at the scaleM . TheM -dependence of l̄i can
be made explicit by relating these to lri , the renormalized
coupling constants at any other scale µ,

lri =
γi

32π2

(
l̄i+ln

M2

µ2

)
. (6)

In Sect. 5 we shall use this equation to show the finiteness
of the pion pole parameters in the chiral limit.
The renormalization of the two-loop graphs would re-

quire vertices from the next higher piece, L(6) in Leff. But
we do not need it, as we are not interested in the ampli-
tude in vacuum to this order, but only in its temperature
dependent part.

3 Vacuum amplitude

Here we obtain the pion pole contribution to the vacuum
two-point function of the axial-vector current,

δabTµν(q) = i

∫
d4xeiqx

〈
0
∣
∣TAaµ(x)A

b
ν(0)
∣
∣0
〉
π pole

, (7)

by calculating all the Feynman graphs up to two loops
with the interaction vertices given by L(2) and L(4). These
graphs are conveniently divided into four groups, as shown
in Figs. 1–4.
Let us first derive the familiar one-loop results. The

vertex correction graphs (b) and (c) of Fig. 1 modify the
residue of the free amplitude of graph (a) to give

T (1a,b,c)µν (q) = qµqνF
2{1+4η(3l4−2J)/3}i∆(q) , (8)

where η = M2

F2
is an expansion parameter and ∆(q) is the

free pion propagator,∆(q) = i/(q2−M2+iε). J is a diver-
gent one-loop integral,

J(M) =
1

M2

∫
d4k

(2π)4
∆(k)≡ 2λ , (9)
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Fig. 1. The free amplitude with corrections from one-loop graphs along with counterterm graphs and those two-loop graphs that
are iterations of the former ones. Vertices of L(2) and L(4) are shown as points and filled circles respectively. Wavy and straight
lines denote axial current and pion respectively

Fig. 2. Remaining factorizable two-loop graphs with vertices from L(2) only

Fig. 3. Further counterterm graphs

Fig. 4. Non-factorizable two-loop graphs

with λ given by (5). To include the self-energy graphs,
it is convenient to introduce here the well-known Dyson–
Schwinger equation for the complete propagator∆′(q),

∆′(q) =∆(q)+∆(q)(−iΣ(q))∆′(q), (10)

where the self-energy part Σ of graphs (d) and (e) of Fig. 1
is given by

Σ(q) =−2η(3l4−J)(q
2−M2)/3+F 2η2(4l3+J)/2 .

(11)

Equation (10) may be solved by iteration,

∆′(q) =∆(q)+∆(q)(−iΣ(q))∆(q)

+∆(q){−iΣ(q)∆(q)}2+ . . . (12)

or in closed form,

∆′(q) =
∆(q)

1+ iΣ(q)∆(q)
. (13)

The self-energy correction is now included in (8) by replac-
ing∆(q) with∆′(q). Thus we get the one-loop result for the
pion pole,

Tµν(q) =−qµqν
F 2π

q2−M2π+ iε
,

with

M2π =M
2{1+2η(l3+J/4)}=M

2(1−ηl̄3/32π
2) , (14)

Fπ = F{1+η(l4−J)}= F (1+ηl̄4/16π
2) , (15)

on using (4).
We now include the two-loop graphs. First consider

those of Figs. 1–3, that are actually products of two one-
loop parts. The total contribution of all these graphs may
be put in the form

T (1+2+3)µν (q) = qµqνF
2
3∑

n=1

{
γni∆(q)+σnM

2∆2(q)
}

+8F 2η2(l1+2l2)(qµJνλ+ qνJµλ)q
λ i∆(q) ,

(16)

where we show separately the sums of contributions of
all graphs in each of Figs. 1–3. Thus the sum of graphs
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in Fig. 1 is given by the n= 1 term1. Note here that the
two-loop graphs from (f) to (l), being iterations of graphs
from (b) to (e), are automatically included in (13). But we
prefer to write them explicitly in (16), getting

γ1 = 1+2η(l4−J)−4η
2(l4−J)(3l4−J)/3 ,

σ1 = η(4l3+J)/2−2η
2J(4l3+J)/3 , (17)

where we cancel factors as (q2−m2)∆2(q) = i∆(q), which
can also be justified at finite temperatures. In this way
we get directly the shifts in the residue and the pole pos-
ition from the graphs of Fig. 1 as F 2(γ1−1) andM2σ1/γ1
respectively. Next, the graphs of Fig. 2 contain only the
vertices of L(2), and their sum is given by the n= 2 term,
with

γ2 = η
2J(8J+3J ′)/3 , σ2 =−η

2J(3J+2J ′)/8 , (18)

where we encounter a new divergent integral related to the
earlier one:

J ′(M) = i

∫
d4k

(2π)4
∆2(k) =−

∂

∂M2
(M2J) =−2λ−

1

16π2
.

(19)

Lastly the sum of graphs of Fig. 3 with vertices from L(2)

and L(4) is given by the term n= 3 with

γ3 = η
2
{
(36l1+12l2−25l4)J+12l3J

′+12l24
}
/3 ,

σ3 =−η
2
{
(36l1+12l2+16l3−3l4)J +3l3J

′

+24(l1+2l2)q
λqσJλσ/M

2
}
/3 , (20)

together with the remaining term in (16), where we have
still another divergent integral,

Jµν(M) =
1

M4

∫
d4k

(2π)4
kµkν∆(k) . (21)

Actually this term is also proportional to qµqν , once the
integral is evaluated. But in view of its extension to finite
temperature, we keep it as such.
Finally we have the amplitude from the non-factorizable

two-loop graphs of Fig. 4,

T (4)µν (q) =−
2i

9F 2
{qµ∆(q)Γν(q)+Γµ(q)∆(q)qν}

+
1

18F 2
qµqν∆(q)Σ(q)∆(q) , (22)

where the vertex function Γµ(q) of graph (a) is

Γµ(q) = i

∫
d4k1
(2π)4

d4k2
(2π)4

(2qµ−3k1µ−3k2µ)f

×∆(k1)∆(k2)∆(q−k1−k2) , (23)

1 A piece, namely −qµqν(F
2/4)η2(J +4l3)

2M4i∆3(q), is
omitted here, as it is automatically included when we put the
n= 1 term in the form of a simple pole.

and the self-energy function Σ(q) of graph (b) is

Σ(q) =−i

∫
d4k1
(2π)4

d4k2
(2π)4

(3M4+2f2)

×∆(k1)∆(k2)∆(q−k1−k2) , (24)

with f standing for the function

f(q, k1, k2) = k
2
1+k

2
2+4k1k2+M

2+2q(k1+k2)−2q
2.

The order of the factors in (22) is in anticipation of their
matrix structures of the thermal amplitudes in the next
section.
In [11] the vertex and self-energy integrals have been

cast in a particularly convenient form using the symmetries
of the integrands under the interchange of the integration
variables. Thus if one defines

K(q) =
i

M2

∫
d4k1
(2π)4

d4k2
(2π)4

×∆(k1)∆(k2)∆(q−k1−k2) , (25)

Kµν(q) =
i

M4

∫
d4k1
(2π)4

d4k2
(2π)4

k1µk1ν

×∆(k1)∆(k2)∆(q−k1−k2) , (26)

they may be written as

Γµ(q) =−2F
4η2
[
qµ(3J

2−K)+9Kµ�q
�
]
, (27)

Σ(q) =−F 4η2
[
4(9J2−4K)(q2−M2)

+3M2(8J2−K)+72q�qσK�σ
]
. (28)

Then (22) simplifies to

T (4)µν = qµqνF
2η2
{
2

3
J2i∆(q)

−
1

6

(
8J2−K+24q�qσK�σ/M

2
)
M2∆2(q)

}

+4F 2η2(qµKνλ+ qνKµλ)q
λi∆(q) . (29)

The sum of the amplitudes (16) and (29), along with
the one from the tree graphs with a single insertion of
vertices from L(6) (not calculated above), would give the
complete, renormalized vacuum amplitude. One may then
extend the one-loop results (14) and (15) for the pion pole
parameters to two loops. Instead, however, we turn to the
corresponding thermal amplitudes to find the temperature
dependence of these parameters.

4 Thermal amplitude

The thermal (ensemble averaged) two-point function of the
axial-vector current is a 2×2 matrix in the real time for-
malism, whose ij element, restricted to the pion pole, is

(
T abµν
)
ij
= i

∫
d4xeiqx

×Tr
[
TcA

a
µ(ϕi(x))A

b
ν(ϕj(x))

]
/Tr|π pole ,

= e−βH , (30)
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where Tc denotes time ordering with respect to the time
contour of Fig. 8 in Appendix A. There we discuss at length
how to obtain the matrix amplitude for an individual graph
from its vacuum amplitude. To summarize, all we need is
to replace the loop integrals (J, J ′, Jµν) encountered in the
vacuum amplitudes by (Jβ , J ′β , Jβµν), where, in effect, the
vacuum pion propagator is replaced by the 11- or 22-com-
ponent of the thermal propagator. Further, the elements
of the vacuum theory, namely, (∆,Σ, Γ ) need be replaced
by the matrices (∆,Σ,Γ) and also∆2 by∆τ∆, where the
matrices are given in Appendix A. Having obtained the
matrix amplitude, we put in the factorized forms for all the
matrices to get an equation among diagonal matrices, each
of whose 11- and 22-elements are identical up to complex
conjugation and possibly a (−) sign. Thus we leave behind
the matrix structure and work with the (single component)
analytic amplitude T βµν(q). Almost repeating (16) and (29)
we write it as the sum of

T β(1+2+3)µν = qµqνF
2
3∑

n=1

{
γβn i∆(q)+σ

β
nM

2∆2(q)
}

+8F 2η2(l1+2l2)
(
qµJ

β
νλ+ qνJ

β
µλ

)
qλi∆(q) ,

(31)

where γβn and σ
β
n are obtained from γn and σn of (17), (18)

and (20) after replacing the J by Jβ , and

T β(4)µν = qµqνF
2η2
[
2

3
(Jβ)2i∆(q)−

1

6

{
8(Jβ)2−Kβ

+24q�qσKβ�σ/M
2
}
M2∆2(q)

]

+4F 2η2
(
qµK

β
νλ+ qνK

β
µλ

)
qλi∆(q) , (32)

where, as in (27) and (28) for the vacuum case, we have
expressed Γ β and Σβ in terms ofKβ,Kβµν (and J

β) with

Kβ(q) =
i

M2

∫
d4k1
(2π)4

d4k2
(2π)4

×∆11(k1)∆11(k2)∆11(q−k1−k2) (33)

and

Kβµν(q) =
i

M4

∫
d4k1
(2π)4

d4k2
(2π)4

k1µk1ν

×∆11(k1)∆11(k2)∆11(q−k1−k2) . (34)

We must point out here that (33) and (34) hold only for the
real parts. (The imaginary parts of both sides differ by the
factor (1+2n(|q0|))−1, as follows from (A.27) and (A.31).)
Since, however, we are interested only in the real parts of
the pole parameters, our imprecise notation will lead to no
error.
As already stated, the vacuum part of this thermal am-

plitude is of no interest to us here, beyond the one-loop
results given in (14) and (15). In the β-dependent part, we
have to isolate the finite terms from the divergent ones.
To this end, we separate the∆11 or 22 into its vacuum and

thermal parts in the expressions for the Jβ ’s and Kβ’s. In
the case of Jβ ’s we have simply

Jβ = J+ J̄ , J ′β = J ′+ J̄ ′ ,

Jβµν = Jµν + J̄µν ,

where

(
J̄ , J̄ ′, J̄µν

)
=

∫
d4k

(2π)3
n(|k0|)

(
1

M2
,−

∂

∂M2
,
kµkν

M4

)

× δ(k2−M2) . (35)

Kβ splits as follows:

Kβ(q) =K(q)+Kβ(q)
∣
∣
div
+ K̄J + K̄(q) . (36)

Here the second term gives the β-dependent divergent
pieces, all proportional to λ. The finite, temperature de-
pendent part can be expressed partly in terms of the J̄ ’s
defined above and the remainder as certain q-dependent
integrals, constituting the third and the fourth term re-
spectively. A similar decomposition holds forKβµν ,

Kβµν(q) =Kµν(q)+K
β
µν(q)

∣
∣
div
+ K̄Jµν+ K̄µν(q) . (37)

All the pieces in (36) and (37) are displayed in Appendix B.
It is now easy to see that all the β-dependent divergent
pieces cancel. We then get the complete, renormalized
thermal amplitude:

T βµν(q) = T
′
µν(q)+ T̄µν(q) , (38)

where T ′µν is the vacuum amplitude without the free pole
term, which is put in the β-dependent piece T̄µν ,

T̄µν(q) = qµqνF
2

[
(1−2J̄η+Aη2)i∆(q)

+

{
1

2
J̄η−

(
B−
K̄(q)

6
+
qλqσ

M2
Sλσ(q)

)
η2
}
M2∆2(q)

]

+F 2{qµSνλ(q)+ qνSµλ(q)}q
λη2i∆(q) , (39)

where the tensor Sµν is given by

Sµν(q) = lJ̄µν +4K̄µν(q) , (40)

and the (β-dependent) constants A and B are built out of
J̄ and J̄ ′,

A= J̄(2J̄ + l′)+ J̄ ′
(
J̄−

l̄3

16π2

)
,

B = J̄

(
19

8
J̄ + l′′

)
+
J̄ ′

4

(
J̄ −

l̄3

16π2

)
. (41)

The three combinations of coupling constants introduced
above are

l=
1

12π2

(
l̄1+4l̄2−

14

3

)
,

l′ =
1

48π2

(
6l̄1+4l̄2−9l̄4−

7

3

)
,

l′′ =
1

48π2

(
6l̄1+4l̄2−6l̄3−3l̄4−

55

12

)
. (42)
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In (39) we have left out regular, non-pole pieces arising
out of explicit factors of q2. We remove further non-pole
pieces by expanding the q-dependent functions in q0 in the
neighborhood of the pole q20 = q

2+M2 ≡ ω2 at fixed q.
Thus

K̄(q) = K̄(0)(ω)+
(
q20−ω

2
)
K̄(1)(ω)+ . . . ,

K̄(1)(ω) =
1

2ω

∂

∂q0
K̄(q)

∣
∣
∣
∣
q0=ω

, (43)

and similarly for Sµν(q). The resulting expression may be
put in the form

T̄µν(q) =−
fµ(q)fν(q)

q20−Ω
2(ω)

, (44)

where

Ω2(ω) = q2+M2
{
1+
1

2
J̄η

−

(
B−
K̄(0)

6
+
1

M2
(qλqσSλσ)

(0)− J̄2
)
η2
}
,

fµ(q) = F

[
qµ

{
1− J̄η

+
1

2

(
A+
M2

6
K̄(1)− (qλqσSλσ)

(1)− J̄2
)
η2
}

+(Sµλq
λ)(0)η2

]
. (45)

Note that fµ(q) is not proportional to qµ due to the pres-
ence of the last term. This is due to the lack of Lorentz in-
variance in a medium, which serves as the preferred frame
of reference. Thus, as in non-relativistic systems [13], we
have here two different F , the temporal and the spatial
ones [14],

f0(q) = q0F
t(q) , fi(q) = qiF

s(q) . (46)

One may now find the thermal dispersion curve for the
pion and its decay ‘constants’ at different values of |q|. In-
stead, however, we set q= 0 and find the effective mass and
the decay constants as a function of temperature. Convert-
ing the parameters F andM to the physical values by (14)
and (15) and using the result (B.9) of Appendix B, we fi-
nally get them as

M2π(T ) =M
2
π

{
1+
M2π
2F 2π
J̄ −
M4π
F 4π

(
l′′′J̄ +

11

8
J̄2+

1

4
J̄ J̄ ′

−
K̄

6
+ lJ̄00+4K̄00

)}
, (47)

F tπ = Fπ

{
1−
M2π
F 2π
J̄+
M4π
2F 4π

(
J̄(J̄ + l′)+ J̄J̄ ′+

Mπ

12

∂K̄

∂q0

+ lJ̄00+4K̄00−2Mπ
∂K̄00

∂q0

)}
, (48)

and

(
F tπ(T )−F

s
π(T )

)
/Fπ =

M4π
3F 4π

{
−12MπC− lJ̄

+4
(
J̄2− K̄+ lJ̄00+4K̄00

)}
,

(49)

where l′′′ is given by

l′′′ =
1

192π2

(
24l̄1+16l̄2−27l̄3−24l̄4−

55

3

)
, (50)

and C is the coefficient of the linear term in the expansion
of K̄0i(q) around q= 0,

K̄0i(q) = C(q0)qi+ . . . (51)

Note that all the quantities J̄ , K̄ etc. are now functions of
Mπ. These results agree with [11] except for the definition
of l′′′.2

5 Evaluation

We now need the values of the coupling constants, l̄i,
i= 1, . . . , 4. They were already determined in the original
work [4, 5], but all of them are not accurate enough [15].
The best values obtained so far follow from matching the
dispersion theoretic phenomenological representation for
the ππ scattering amplitude to its two-loop evaluation in
chiral perturbation theory [16],

l̄1 =−0.4±0.6 , l̄2 = 4.3±0.1 , (two loop)

while the values relevant in the context of one-loop approx-
imation are

l̄1 =−1.9±0.2 , l̄2 = 5.25±0.04 . (one loop)

The difference in the two sets of values are attributed to
the infrared singularities that can be better dealt with in
the two-loop matching than in the case of one loop. The
original crude estimate of l̄3 [4, 5],

l̄3 = 2.9±2.4 (one loop),

has not been improved further. Finally the two-loop esti-
mate of l̄4 [16],

l̄4 = 4.4±0.2 (two loop),

does not differ much from the original one-loop esti-
mate [4, 5],

l̄4 = 4.3±0.9 (one loop),

2 In the expression for 192π2l′′′, Toublan [11] finds the coef-
ficients of l̄3 and l̄4 to be −15 and −12 respectively, instead of
−27 and −24 found by us
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as the presence of infrared singularities is weakly felt here.
It should be noted here that in our two-loop calculation

of the pion pole in the axial-vector Green’s function at fi-
nite temperature, it is actually the scattering amplitude in
vacuum to one loop that enters its temperature dependent
part. It is thus appropriate to use the one-loop estimate of
the coupling constants in the present context.
We now evaluate the pion pole parameters in two re-

gions of temperature. First consider the so-called high tem-
perature limit, T �Mπ. To remain within the domain of
the low temperature expansion, this limit is implemented
not by letting T increase, but instead by holding T fixed
and sending Mπ to zero. The value of Mπ is determined
by the quark masses. Thus the high temperature limit is
equivalent to the chiral limit of QCD theory.
The values of the relevant integrals in the chiral limit

are given in Appendix C. The contributing terms are only
η2J̄2 and the combination

η2(lJ̄00+4K̄00) =
T 4

36F 4
(Z(T )+ c) , (52)

where

Z(T ) = ln
M

T
+
1

10
(l̄1+4l̄2) ,

c=−
7

15
− ln 2+1− I1+ I2 = 0.30 ,

as obtained from (42) and (C.1). Here Z(T ) has actually no
logarithmic singularity in the chiral limit, as can be seen by
shifting the renormalization scale of the coupling constants
with (6) fromM to any other value µ.
We thus get the results for the pion mass and decay con-

stants to two loops at finite temperature in the chiral limit
as follows:

M2π(T )

M2π

∣∣
∣
∣
χ

= 1+
T 2

24F 2
−
T 4

36F 4

(
Z(T )+ c+

11

32

)

= 1+
T 2

24F 2
−
T 4

36F 4
ln
ΛM

T
, (53)

F tπ(T )

Fπ

∣
∣
∣
∣
χ

= 1−
T 2

12F 2
+
T 4

72F 4

(
Z(T )+ c+

1

4

)

= 1−
T 2

12F 2
+
T 4

72F 4
ln
ΛF

T
, (54)

F tπ(T )−F
s
π(T )

Fπ

∣∣
∣
∣
χ

=
T 4

27F 4

(
Z(T )+ c+

1

4

)

=
T 4

27F 4
ln
Λ∆

T
, (55)

where the logarithmic scales are

ΛM = 1.8 GeV , ΛF = Λ∆ = 1.6 GeV ,

in agreement with [11]. Note that ΛF is associated with
F tπ(T ) and not its square, as in this reference. (Had we cho-
sen the two-loop coupling constants, we would get some-
what smaller values for the Λ, namely, ΛM = 1.4 GeV,
ΛF = Λ∆ = 1.3 GeV.)

Next we consider the low temperature limit, T �Mπ.
We shall express all quantities in terms of the dimension-
less ratio

τ =
T

Mπ

times possibly a power of temperature.
The leading behavior of all the pole parameters in the

low temperature region is given essentially by that of J̄ , as
seen from (C.3)–(C.5). Thus we get

M2π(T )

M2π

∣
∣∣
∣
τ

= 1+

(
M2π
2F 2π
−
5g1M

4
π

24π2F 4π

)
J̄ |τ , (56)

F tπ(T )

Fπ

∣
∣
∣
∣
τ

= 1−

(
M2π
F 2π
−
5g2M

4
π

48π2F 4π

)
J̄ |τ , (57)

F tπ(T )−F
s
π(T )

Fπ

∣
∣
∣
∣
τ

=
g3M

4
π

12π2F 4π
J̄

∣
∣
∣
∣
τ

, (58)

Fig. 5. Thermal pion mass squared in chiral (continuous
curve) and non-relativistic (dashed one) limits

Fig. 6. ‘Temporal’ type of thermal pion decay constant in the
two limits as in Fig. 5
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Fig. 7. Difference of temporal and spatial types of pion decay
constant in the two limits as in Figs. 5 and 6

where

g1 = l̄1+2l̄2−
27

40
l̄3−
3

5
l̄4+
9

8
,

g2 = l̄1+2l̄2−
9

10
l̄4+

3

10
,

g3 = l̄1+4l̄2+
4

3
, (59)

and J̄ |τ is given by (C.3).
It is interesting to note that the two-loop contributions

to the effective parameters are always of opposite sign com-
pared to that of one loop, when it contributes. Figures 5–7
show the temperature dependence of these parameters.

6 Discussion

Though the propagators, vertices and self-energies assume
the form of 2× 2 matrices in the real time field theory
at finite temperature, each of them is essentially given by
a single analytic function, as can be seen from an appro-
priate factorization of these matrices. The same is true of
the ensemble average of (the T -product of) any two op-
erators. Here we show that one can find its thermal 2×2
matrix amplitude directly from the vacuum amplitude and
take advantage of this factorization to get the analytic (sin-
gle component) thermal amplitude. Thus compared to the
commonly followed practice of considering the 11-element
of the thermal matrix, the use of matrices not only sim-
plifies and frees the calculation from ill-defined quantities
at intermediate steps, but also yields directly the ampli-
tude with proper analytic properties, not possessed by the
11-element.
In this work we use this matrix method to calculate

the thermal pion pole term in the axial-vector two-point
function in the framework of chiral perturbation theory.
From the analytic amplitude we derive the effective mass
and the decay constants of the pion at finite temperature.

These are evaluated in two limits, the chiral and the non-
relativistic one. The two evaluations agree rather closely
up to about T � 100MeV.
The dynamical degrees of freedom in the effective La-

grangian are only those of the Goldstone bosons. Thus one
may think, a priori, that the massive states also contribute,
as virtual states in Feynman diagrams and as real particles
in the heat bath. The contribution of such virtual states
are, however, already incorporated in the low energy con-
stants, determined phenomenologically [4, 5, 16]. In fact,
the calculation of these contributions show that they al-
most saturate the values of these constants [4, 5, 17, 18].
On the other hand, the massive states in the heat bath

do contribute, though exponentially (like e−m�/T for the
 meson, for example); they do not show up at any finite
order in a power series in T . However, because of the ex-
ponential suppression and the presence of a factor of T 2

from interaction, such terms can contribute at most 5% in
different physical quantities for T less than 100MeV [12].
In this work we are concerned only with the real parts

of the effective parameters. As expected, their imaginary
parts also lead to interesting physical quantities. The imag-
inary part of the pion pole position gives directly the mean
free path in thermalized matter. It has been evaluated by
using chiral perturbation theory [7] and by using the virial
formula [19]. The imaginary parts of F tπ(T ) and F

s
π(T ) are

related through this mean free path [14].We shall report on
their evaluation elsewhere.
Finally we compare our work with that of Toublan [11],

whom we follow at a number of points. He obtains the ther-
mal amplitude in a somewhat intuitive manner, while we
formulate rules to write the matrix amplitude, which leads
immediately to the analytic thermal amplitude. These
rules, in effect, justify his way of writing the thermal
amplitude, as far as its real part is concerned. Our re-
sults (47)–(49) for the effective mass and decay constants
of the pion agree with his, except for the coefficient l′′′ in
the equation for M2π(T ) – (see footnote 2). But their chi-
ral limits (53)–(55) agree completely with his, as the term
with this coefficient does not contribute in this limit. We
also find the effective parameters in the non-relativistic
limit, in which this term does contribute.
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Appendix A

The feature of the real time thermal field theory that dis-
tinguishes it from the vacuum theory is the time contour in
their generating functionals.While it is the infinite real line
for the vacuum theory, it must be augmented with a return
path for the thermal theory. One example of such a path
that we shall use is shown in Fig. 8. The return pathmay be
folded onto the onward path, generating fields with a dis-
placed time argument. Thus compared with the vacuum
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Fig. 8. The complex time contour of real time thermal field
theory

generating functional,
〈
0

∣
∣
∣
∣T exp

[
i

∫
d3x

∫ ∞

−∞
dt

×
{
Lint(ϕ)+ j(x)ϕ(x)+ j

µ(x)Aµ(x)
}
in

]∣∣
∣
∣0
〉
, (A.1)

the thermal one is given by

Tr

[
T exp

[
i

∫
d3x

∫ ∞

−∞
dt
{
Lint(ϕ1)−Lint(ϕ2)

+
∑

n=1,2

(jn(x)ϕn(x)+ j
µ
n(x)Aµn(x))

}

in

]]
, (A.2)

both written in the interaction representation in terms
of the in-fields, denoted by the subscript ‘in’, which we
shall omit below. The fields ϕ1(x) and ϕ2(x) have their
time arguments on the segments C1 and C2 respectively:
ϕ1(x) = ϕ(x, t) is the ‘physical field’ and ϕ2(x) = ϕ(x, t−
iβ/2) is the ‘ghost’ field. The (−) sign before L(ϕ2) is
forced upon us by the theory, but the signs before the n= 2
terms with the external fields are at our disposal, which we
choose to be positive. The pieces C3 and C4 of the complex
time contour are of no consequence and have been dropped.
The two sets of fields make any thermal two-point func-

tion a 2×2 matrix. In particular, the free pion propagator
is

∆ab(x−y) = δab∆(x−y)

=

( 〈
Tϕa1(x)ϕ

b
1(y)
〉 〈
ϕb2(y)ϕ

a
1(x)
〉

〈
ϕa2(x)ϕ

b
1(y)
〉 〈
T̃ϕa2(x)ϕ

b
2(y)
〉

)

,

(A.3)

where T̃ denotes anti-time ordering, can be evaluated di-
rectly in momentum space as

∆(q) =(
∆(q)+2πn(|q0|)δ(q

2−M2) 2πn(|q0|)δ(q
2−M2)eβ|q0|/2

2πn(|q0|)δ(q
2−M2)eβ|q0|/2 ∆∗(q)+2πn(|q0|)δ(q

2−M2)

)
,

(A.4)

where n(|q0|) = (eβ|q0|−1)−1 is the pion distribution func-
tion and ∆(q) = i/(q2−M2+ iε) is the pion propaga-
tor in vacuum. (A boldface letter will always indicate
a 2×2 matrix.)

Given the Feynman amplitude for any two-point func-
tion in vacuum, it is simple to write the corresponding ther-
mal matrix amplitude. The correspondence may be found
by comparing the Wick contractions for graphs in the two
cases, with particular attention to the (−) sign before the
‘ghost’ Lagrangian. As an example, consider the graph (d)
of Fig. 1, for which we show this correspondence in detail.
Its vacuum amplitude in coordinate space is obtained from

−F 2i

∫
d4z
〈
0
∣
∣T∂µϕa(x)∂νϕb(y)Lint(ϕ(z))

∣
∣0
〉
, (A.5)

where Lint is a piece in L(2),

Lint(ϕ) =−
1

6F 2

{
→
ϕ ·
→
ϕ∂µ

→
ϕ ·∂µ

→
ϕ−

→
ϕ ·∂µ

→
ϕ
→
ϕ ·∂µ

→
ϕ

−
M2

4
(
→
ϕ ·
→
ϕ)2
}
, (A.6)

the field
→
ϕ denoting the pion iso-vector triplet (ϕ1, ϕ2, ϕ3).

It gives the amplitude in momentum space,

T (1d)µν (q) = qµqνJ(M)M
2

{
2

3
i∆(q)+

1

2
M2∆2(q)

}
,

(A.7)

where J(M) is defined by (9). The single propagator in this
expression arises from the cancellation,

(q2−M2)∆2(q) = i∆(q) . (A.8)

We now identify the contractions in (A.5) that produce
this result. To focus on the contractions, we omit the
derivatives and isospin indices on the pion fields and write
schematically a term of the matrix element (A.5) as

〈0|Tϕ(x)ϕ(y)ϕ4(z)|0〉 ∼ J(M)∆(x− z)∆(z−y)

∼ J(M)∆2(q) (A.9)

in momentum space. To get the corresponding thermal ma-
trix amplitude, consider its ij element,

−F 2i

∫
d4z
〈
T∂µϕ

a
i (x)∂νϕ

b
j (y)

×{Lint(ϕ1(z))−Lint(ϕ2(z))}
〉
. (A.10)

Again we write schematically a term of this matrix element
and contract its fields as follows:
〈
Tϕi(x)ϕj(y)

{
ϕ41(z)−ϕ

4
2(z)
}〉

∼ Jβ(M)
〈
Tϕi(x)ϕj(y)

{
ϕ21(z)−ϕ

2
2(z)
}〉

∼ Jβ(M){∆i1(x− z)∆1j(z−y)−∆i2(x− z)∆2j(z−y)}

∼ Jβ(M)(∆(q)τ∆(q))ij (A.11)

in momentum space, where we use in the second line the
fact that the contractions of two ϕ1 and two ϕ2 at the same
point yield the same result,

Jβ(M) =
1

M2

∫
d4k

(2π)4
∆(q)11 or 22 (A.12)
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and the matrix τ is

τ =

(
1 0
0 −1

)
. (A.13)

Note that a cancellation similar to (A.8) for the vacuum
case works also here,

(q2−M2)∆(q)τ∆(q) = i∆(q) . (A.14)

Comparing the contractions (A.9) and (A.11), we see that
the thermal matrix amplitude of graph (1d) can be ob-
tained from the vacuum amplitude (A.7) simply by replac-
ing J with Jβ ,∆ with∆ and∆2 by∆τ∆ in it.
A little reflection on the other graphs of Figs. 1–3 will

convince us that the thermal amplitudes of all these graphs
may be obtained from their vacuum amplitudes by the re-
placements just stated above, together with J ′ and Jµν by
J ′β and Jβµν respectively, where

J ′β(M) = i

∫
d4k

(2π)4
(∆(k)τ∆(k))11 or 22

=−
∂

∂M2
(M2Jβ) , (A.15)

and

Jβµν(M) =
1

M4

∫
d4k

(2π)4
kµkν∆(k)11 or 22 . (A.16)

In (A.15) we use the so-called mass-derivative formula for
the matrix propagator [20],

(∆τ)2 = i
∂

∂M2
(∆τ) , (A.17)

which is the thermal extension of the trivial relation
∆2(q) = i∂∆/∂M2 for the vacuum propagator.
So long we constructed thermal amplitudes with the

matrix propagator only, inserting τ explicitly to account
for the (−) sign from the ‘ghost’ Lagrangian.We now intro-
duce two kinds of parts of graphs, namely the self-energy
and the (two-point) vertices, where it is convenient to in-
clude the effect of the associated (−) sign(s) in their defi-
nitions. Thus writing the ij-component of the matrix am-
plitude of Fig. 4b, again schematically, and contracting the
fields, we get

〈
Tϕi(x)

{
ϕ41(u)−ϕ

4
2(u)
}{
ϕ41(v)−ϕ

4
2(v)
}
ϕj(y)

〉

∼ (∆(x−u)Σ(u− v)∆(v−y))ij , (A.18)

and absorbing the (−) signs in the definition ofΣ,

Σ=

(
s11 −s12
−s21 s22

)
, sij = (∆ij)

3. (A.19)

Likewise, for the graph of Fig. 4a we write

〈
Tϕ3i (x)

{
ϕ41(u)−ϕ

4
2(u)
}
ϕj(y)

〉
∼ (Γ(1)∆)ij ,

Γ(1) =

(
s11 −s12
s21 −s22

)
, (A.20)

and

〈
Tϕi(x)

{
ϕ41(u)−ϕ

4
2(u)
}
ϕ3j (y)

〉
∼ (∆Γ(2))ij ,

Γ(2) =

(
s11 s12
−s21 −s22

)
. (A.21)

The matrix amplitudes are greatly simplified by fac-
toring out matrices involving only the pion distribution
function. Thus the free propagator given by (A.4) can be
factored as follows:

∆(q) =U(q)

(
∆(q) 0
0 ∆∗(q)

)
U(q) ,

U(q) =

(√
1+n

√
n√

n
√
1+n

)
. (A.22)

Also the full propagator ∆′ and the two-point func-
tionTµν admit similar factorizations,

∆′(q) =U(q)

(
∆′β(q) 0
0 ∆′β∗(q)

)
U(q) ,

Tµν(q) =U(q)

(
T βµν(q) 0
0 −T β∗µν (q)

)
U(q) , (A.23)

as is suggested by the evaluation of our graphs. More rigor-
ously, these follow from their spectral representations.
To derive a similar factorization of the self-energy

part Σ, we look at the Dyson–Schwinger equation for the
full propagator,

∆′ =∆+∆(−iΣ)∆′ . (A.24)

Inserting the factorizations for∆′ and∆, we infer that Σ
must have the factorized form [21],

Σ(q) =U−1
(
Σβ(q) 0
0 −Σβ∗(q)

)
U−1 . (A.25)

It immediately follows that

Σ22 =−Σ
∗
11 , Σ21 =Σ12 . (A.26)

Further we can get the function Σβ entirely fromΣ11,

ReΣβ =ReΣ11 , ImΣ
β =

1

1+2n
ImΣ11 . (A.27)

In the same way the relations

T∼−iΓ(1)∆∼∆(−iΓ(2)) (A.28)

give us the factorizations

Γ(1) =U

(
Γ β 0
0 Γ β∗

)
U−1 ,

Γ(2) =U−1
(
Γ β 0
0 Γ β∗

)
U. (A.29)

We see that Γ(1) and Γ(2) differ by a (−) sign in the off-
diagonal elements, which is of no consequence to us. We
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thus omit the superscripts to write the relations given
by (A.29) as

Γ22 = Γ
∗
11 , Γ21 = Γ12 . (A.30)

Again the 11-element determines the function Γ β com-
pletely,

ReΓ β =ReΓ11 , ImΓ
β =

1

1+2n
ImΓ11 . (A.31)

Appendix B

The β-dependent, divergent and finite parts of Kβ(q) and
Kβµν have been obtained in [11], which we reproduce here
for completeness. The divergent parts reside only in terms
linear in the distribution function, where we need the vac-
uum integrals,

L(p) = i

∫
d4k

(2π)4
∆(k)∆(p−k)

=−2λ−
1

16π2
+R(p) ,

and

Lµν(p) =
i

M2

∫
d4k

(2π)4
kµkν∆(k)∆(p−k)

=
λ

6M2
{
(p2−6M2)gµν −4pµpν

}

−
1

2(24πM)2
[
20pµpν−2p

2gµν

+
{
4pµpν − (p

2−4M2)gµν −4M
2pµpν/p

2
}
R(p)

]
,

(B.1)

with

R(p) =−
1

16π2

∫ 1

0

dx ln(1−p2x(1−x)/M2) . (B.2)

Then the terms linear in n are given by

Kβ(q)|n =
3

M2

∫
d4k

(2π)3
δ(k2−M2)n(|k0|)L(q−k) ,

=−6λJ̄−
3

16π2
J̄

+
3

M2

∫
d4k

(2π)3
δ(k2−M2)n(|k0|)R(q−k)

(B.3)

and

Kβµν(q)|n =
1

M4

∫
d4k

(2π)3
kµkνδ(k

2−M2)n(|k0|)L(q−k)

+
2

M2

∫
d4k

(2π)3
kµkνδ(k

2−M2)n(|k0|)Lµν(q−k)

=−
λ

3

[
10J̄µν +

{
5gµν+

(
4qµqν − q

2gµν
)
/M2
}
J̄
]

+
1

2(12πM)2
[{
(q2+M2)gµν −10qµqν

}
J̄−28M2J̄µν

]

+
1

6M4

∫
d4k

(2π)3
δ(k2−M2)n(|k0|)R(q−k)

×
[
4qµqν −4(qµkν + qνkµ)+10kµkν

− gµν(q
2−3M2−2qk)

−4M2(q−k)µ(q−k)ν/(q−k)
2
]
. (B.4)

Next consider the terms quadratic in n. Introducing the
integrals

Q(p) =

∫
d4k

(2π)3
δ(k2−M2)n(k)

(p−k)2−M2
,

Qµ(p) =

∫
d4k

(2π)3
kµ
δ(k2−M2)n(k)

(p−k)2−M2
, (B.5)

we can write them as

Kβ(q)|n2 =−
3

M2

∫
d4k

(2π)3
δ(k2−M2)n(|k0|)Q(q−k)

(B.6)

and

Kβµν(q)|n2 =−
1

M4

∫
d4k

(2π)3
δ(k2−M2)n(|k0|)

× [{qµqν +4kµkν −2(qµkν + qνkµ)}Q(q−k)

+kµQν(q−k)+kνQµ(q−k)] . (B.7)

These terms as well as the last terms in (B.3) and (B.4)
belong to K̄(q) and K̄µν(q) in the notation of (36) and (37).
Note that Qi and Q0 are not independent but are re-

lated by

Qi(p) =
pi

2|p|2
{
2p0Q0(p)−p

2Q(p)+ J̄
}
. (B.8)

Using this relation one can relate K̄ij and K̄00 at the pole,
q0 =M with q= 0,

K̄ij =
δij

3

(
K̄00− K̄+ J̄

2
)
. (B.9)

Being interested in the real parts, we shall not consider
terms cubic in n, which are imaginary.

Appendix C

Here we write the chiral and the non-relativistic limits of
the integrals occurring in the expressions for the effective
pion parameters. The chiral limits were obtained in [11]3:

ηJ̄
∣
∣
χ
=
T 2

12F 2
−
MT

4πF 2
, η2J̄00

∣
∣
χ
=
π2T 4

30F 4
,

η2K̄00
∣
∣
χ
=
T 4

144F 4

(
ln
M

T
− ln 2+1− I1+ I2

)
,

(C.1)

3 In [11] the integral I1 is evaluated by expressing it in terms
of derivatives of Zeta and Gamma functions. But since the inte-
gral I2 has to be evaluated numerically anyway, we can do the
same for I1 also and get an identical result.
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where

I1 =
15

2π4

∫ ∞

0

dxx3 lnx

ex−1
= 0.60 ,

I2 =
18

π4

∫ ∞

0

dxx3

ex−1

∫ 1

0

dα

eαx−1

×

{
(1+α2) ln

1+α

1−α
+α ln

1−α2

α2x2

}

= 1.05 . (C.2)

The integrals for η2K̄
∣
∣
χ
and η2 ∂K̄∂q0

∣
∣
∣
χ
vanish, while those for

η2 ∂K̄00
∂q0

∣
∣
∣
χ
and η2C

∣
∣
χ
are finite in the chiral limit. (Actually

the terms linear and quadratic in n in each of the latter two
quantities have singular pieces separately in this limit, but
they cancel out in their respective sums.)
Next we calculate the integrals in the low temperature

region, where τ ≡ T/Mπ � 1. Keeping only the leading
terms, we get

J̄
∣
∣
τ
= J̄00

∣
∣
τ
=
( τ
2π

)3/2
e−

1
τ , (C.3)

1

3
K̄
∣
∣
τ
=
1

3
K̄00
∣
∣
τ
=
1

2
Mπ
∂K̄00

∂q0

∣∣
∣
∣
τ

=MπC
∣
∣
τ
=
1

16π2
J̄
∣
∣
τ
, (C.4)

Mπ
∂K̄

∂q0

∣
∣
∣
∣
τ

=O(τ5/2e−
1
τ ) . (C.5)

References

1. G.W. Semenoff, H. Umezawa, Nucl. Phys. B 220, 196
(1983)

2. A.J. Niemi, G.W. Semenoff, Ann. Phys. (New York) 152,
105 (1984)

3. For a review see C.G. vanWeert, Phys. Rep.145, 141 (1987)
4. J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984)
5. J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465 (1985)
6. J. Gasser, H. Leutwyler, Phys. Lett. B 184, 83 (1987)
7. J. Goity, H. Leutwyler, Phys. Lett. B 228, 517 (1989)
8. A. Schenk, Phys. Rev. D 47, 5138 (1993)
9. C. Song, Phys. Rev. D 49, 1556 (1994)
10. A. Ayala, S. Sahu, Phys. Rev. D 62, 056007 (2000)
11. D. Toublan, Phys. Rev. 56, 5629 (1997)
12. P. Gerber, H. Leutwyler, Nucl. Phys. B 321, 387 (1989)
13. H. Leutwyler, Phys. Rev. D 49, 3033 (1994)
14. R.D. Pisarski, M. Tytgat, Phys. Rev. D 54, 2989 (1996)
15. G. Ecker, in Chiral Dynamics: Theory and Experiment, ed.
byA.M.Bernstein,D.Drechsel,T.Walcher (Springer, 1997)

16. G. Colangelo, J. Gasser, H. Leutwyler, Nucl. Phys. B 603,
125 (2001)

17. G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B
321, 311 (1989)

18. G. Ecker, J. Gasser, H. Leutwyler, A. Pich, E. de Rafael,
Phys. Lett. B 223, 425 (1989)

19. H. Leutwyler, A.V. Smilga, Nucl. Phys. B 342, 302 (1990)
20. Y. Fujimoto, H. Matsumoto, H. Umezawa, I. Ojima, Phys.
Rev. D 30, 1400 (1984)

21. R.L. Kobes, G.W. Semenoff, Nucl. Phys. B 260, 714 (1985)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


